

Nombre del documento	Fecha de elaboración	Código	Versión
PROGRAMA DE ASIGNATURA	2012 Marzo 29	FOR - FO - 030	1.0

	1. DE	SCRIPCIÓN AD	MINISTRA	ΓΙVΑ								
Facultad	EDUCACIÓN	EDUCACIÓN Y CIENCIAS										
Programa	Licenciatura	Licenciatura en Física										
Nombre Asignatura	Electiva II - Fu	Electiva II - Fundamentos de Mecánica cuántica 2										
Código												
Área												
Departamento que la ofrece	Departamento	Departamento de Física										
Requisitos												
Créditos	3											
Semestre	8											
Modalidad												
Intensidad Horaria/Semanal	Teóricas	4		Prácticas	No							
Intensidad Horaria/Semestral	Teóricas 64 Prácticas No											
Nivel	Pre	grado	Х	Posgi	rado							
2. JUSTIFICACIÓN												

La mecánica cuántica es hoy considerada como la teoría más exitosa que ha creado el ser humano para el entendimiento de la naturaleza. Este calificativo se apoya en los grandes avances tecnológicos que van desde las telecomunicaciones hasta la estructura del ADN y, en cuanto a aspectos más fundamentales del conocimiento, la mecánica cuántica nos ha permitido saber o al menos aproximarnos a entender de que está hecho el universo y su posible origen. Por lo anterior, la mecánica cuántica es una obligación para quienes escudriñan la naturaleza y merece toda la atención de los educadores en ciencias físicas para estimular en los estudiantes el pensamiento crítico a través de todas las implicaciones filosóficas que trae la mecánica cuántica. Si bien el programa de licenciatura en física de la Universidad de Sucre ofrece un curso de introducción a la mecánica cuántica, éste no alcanza a cubrir otros temas fundamentales y otros métodos de resolución de problemas que son parte del conocimiento básico de dicho campo, por lo tanto, en esta nueva asignatura se pretende dar continuidad al curso de introducción a la mecánica cuántica para que el estudiante que así lo desee, tenga una base mucho más amplia.

3. **OBJETIVO GENERAL**

- Dominar la aplicación de los postulados de la mecánica cuántica en sistemas compuestos.
- Identificar la conexión entre simetrías, degeneración y leyes de conservación en sistemas mecanocuánticos simples o compuestos.
- Adquirir destreza en el manejo de métodos de aproximación para la solución de problemas mecanocuánticos sin soluciones exactas.

4. COMPETENCIAS

Al finalizar la asignatura, el estudiante tendrá la capacidad de:

- Aplicar las nociones básicas del formalismo matemático de la mecánica cuántica en sistemas compuestos.
- Identificar el método de solución adecuado y aplicarlo a problemas mecano-cuánticos no exactamente solubles.
- Estudiar sistemas mecano-cuánticos más complejos en estudios de posgrado.

[M7.5 H2 [M2.000-(M2.04)	Nombre del documento	Fecha de elaboración	Código	Versión
	PROGRAMA DE ASIGNATURA	2012 Marzo 29	FOR - FO - 030	1.0

5. CONTENIDO

Capítulo 1: PRODUCTO TENSORIAL EN EL ESPACIO DE ESTADO

- Definición y propiedades de un producto tensorial.
- El espacio de Hilbert del producto tensor.
- Producto tensorial de operadores.
- Ecuación de valores propios en el espacio producto: valores y vectores propios del espacio extendido.

Capítulo 2: TEORÍA DEL MOMENTUM ANGULAR

- Rotaciones y relaciones de conmutación del momentum angular
- Sistemas de spin (½): El experimento de Stern-Gerlach y la cuantización del momentum angular.
- El formalismo de Pauli Para sistemas de spin (1/2).
- Teoría general del moemntum angular: Valores y vectores propios del momentum angular.
- Aplicaciones: momentum angular orbital.

Capítulo 3: ADICIÓN DE MOMENTUM ANGULAR

- Adición de dos spins (1/2): Método elemental
- Adición de dos momentums angulares arbitrarios: método general.
- Coeficientes de Clebsch-Gordan.
- Ejemplos de aplicación de adición de momentum angular.

Capítulo 4: MÉTODOS DE APROXIMACIÓN

- Teoría de perturbación independiente del tiempo: caso no degenerado.
- Teoría de perturbación independiente del tiempo: caso degenerado.
- Teoría de perturbación dependiente del tiempo.
- Átomos hidrogenoides: estructura fina y el efecto Zeeman.

6. PLAN DE UNIDADES BÀSICAS

(Ver cuadro en la página siguiente).

7. METODOLOGÌA

El curso principalmente se desarrollará de forma magistral, con 4 horas presenciales. Los estudiantes por su parte, y con el objetivo de afianzar los conocimientos adquiridos, desarrollarán listas semanales de ejercicios que incluyen problemas por cada tema discutido en las clases.

8. EVALUACIÓN

El curso será evaluado con 4 exámenes parciales cada uno con una ponderación de 25% de la nota final.

9. AYUDAS DIDÀCTICAS Y NECESIDADES DE RECURSOS

Cuando fuere necesario se usará proyector de Video.

TWARE DRIVING SHORE	Nombre del documento	Fecha de elaboración	Código	Versión
135441 14000 4334	PROGRAMA DE ASIGNATURA	2012 Marzo 29	FOR – FO – 030	1.0

10. BIBLIOGRAFÌA

Texto Guía:

- 1. C. COHEN-TANNOUDJI, B. DIU y F. LALOË: Quantum Mechanic. Tomos I y II. Hermann (1980). 2. J. J. Sakurai: Modern Quantum Mechanics, Addison Wesley (1994).
- 3. David J. Griffiths: Introduction to quantum Mechanics, third edition, Cambridge University Press (2017)

	COMITÉ CURRICULAR										
	Acta N°										
Fecha de Aval											
	CONSEJO DE FACULTAD										
	Acta N°										
Fecha de Aprobación											
	CONSEJO ACADÉMCO										
	Acta N°										
Fecha de Aprobación											

Nombre del documento	Fecha de elaboración	Código	Versión
PROGRAMA DE ASIGNATURA	2012 Marzo 29	FOR - FO - 030	1.0

PLAN DE UNIDADES ACADÉMICAS

Unidad 1: PRODUCTO TENSORIAL EN EL ESPACIO DE ESTADO (2 semanas)

Semana	Tema	Traba	Trabajo del estudiante con acompañamiento según estrategias metodológicas (horas)									de	Tiempo edicació udiante (n del	Recursos	Lugar
1	-Definición y propiedades de un producto tensorial. -El espacio de Hilbert del producto tensor.	CM	VID	T <i>tA</i>	Tt B	LtA	LtB	SE	PC	TV	EVA	<u>TP</u> 4	5	9 9		Aula de clases
2	-Producto tensorial de operadores Ecuación de valores propios en el espacio producto: valores y vectores propios del espacio extendido.											4	5	9		Aula de clases
	SUBTOTAL											8	10	18		

Unidad 2: TEORÍA DEL MOMENTUM ANGULAR (4 semanas)

Semana	Tema	Traba	ajo del e	studia		n acom dológic			según	estrat	egias		oo de de studiante	dicación (horas)	Recursos	Lugar
		CM	VID	TtA	Tt B	LtA	LtB	SE	PC	TV	EVA	TP	TI	TOT		-
2	Rotaciones y relaciones de conmutación del momentum angular											4	5	9		Aula de clases
3	 Sistemas de spin (½): El experimento de Stern- Gerlach y la cuantización del momentum angular. 											4	5	9		Aula de clases

1 M/2 45 E40 (0 - 0 M/2 4	Nombre del documento	Fecha de elaboración	Código	Versión
	PROGRAMA DE ASIGNATURA	2012 Marzo 29	FOR – FO – 030	1.0

	- El formalismo de Pauli Para sistemas de spin (½).									
4	Teoría general del momentum angular: Valores y vectores propios del momentum angular.						4	5	9	Aula de clases
5	Aplicaciones: momentum angular orbital.						4	5	9	Aula de clases
	SUBTOTAL						16	20	36	

Unidad 3: ADICIÓN DE MOMENTUM ANGULAR (5 semanas)

Semana	Tema	Traba	ajo del e	estudia		n acom dológic			según	estrat	egias	Tiemp del es	Lugar			
		CM	VID	T <i>tA</i>	Tt B	LtA	LtB	SE	PC	TV	EVA	TP	TI	TOT		
6	Adición de dos spins (1/2): Método elemental											4	5	9		Aula de clases
7	Adición de dos momentums angulares arbitrarios: método general.											4	5	9		Aula de clases
8	Continuación, adición de dos momentums angulares arbitrarios: método general.											4	5	9		Aula de clases
9	Coeficientes de Clebsch- Gordan.											4	5	9		Aula de clases
10	Ejemplos de aplicación de adición de momentum angular.											4	5	9		Aula de clases
	SUBTOTAL											20	25	45		

Nombre del documento	Fecha de elaboración	Código	Versión
PROGRAMA DE ASIGNATURA	2012 Marzo 29	FOR - FO - 030	1.0

Unidad 4: MÉTODOS DE APROXIMACIÓN (5 semanas)

Semana	Tema		Trabajo del estudiante con acompañamiento según estrategias metodológicas (horas) CM VID TtA TtB LtA LtB SE PC TV EVA								Tiempo de dedicación del estudiante (horas)		(horas)	Recursos	Lugar	
11	Teoría de perturbación independiente del tiempo: caso no degenerado.	CIVI	VID	TVA	16.0	LiA	LID	JL.	10	I V	LVA	4	5	9		Aula de clases
	Teoría de perturbación independiente del tiempo: caso degenerado.											4	5	9		Aula de clases
	Teoría de perturbación dependiente del tiempo.											4	5	9		Aula de clases
	Átomos hidrogenoides: estructura fina y el efecto Zeeman.											4	5	9		Aula de clases
	Continuación átomos hidrogenoides: estructura fina y el efecto Zeeman.											4	5	9		Aula de clases
	SUBTOTAL											20	25	45		